Methotrexate-vindesine association in head and neck cancer: modification of methotrexate's hydroxylation in presence of vindesine*

P. Bore¹, N. Lena², A. M. Imbert², R. Favre³, J. P. Cano¹ G. Meyer², and Y. Carcassonne³

Summary. High-dose methotrexate (HD-MTX) infusions associated with vindesine (VDS) have been used in the treatment of head and neck cancer. In a previous study, VDS was shown to increase the apparent plasma clearance of MTX.

We have studied the MTX hydroxylation process in the presence of VDS. Different routes of administration have been tested (IV pushes and 24-h or 36-h infusions). A radioimmunoassay has been developed to measure 7-OH-MTX. The defined protocols enabled us to show that VDS influences not only the pharmacokinetic behavior of methotrexate but also its hydroxylation, which is decreased in presence of VDS.

Introduction

Methotrexate (MTX) is one of the most widely used drugs in the treatment of human malignancies [2, 22]. Different dose schedules have been evaluated, most of them with leucovorin rescue. This use of leucovorin rescue, associated with pharmacokinetic considerations, allowed a significant improvement in MTX regimen in combatting the resistance of many carcinomas, such as head and neck tumors and disseminated breast cancer [20, 23].

Another possibility in the treatment of such carcinoma is the combination of two or more drugs [1, 9, 15, 21]. To improve the therapeutic impact of these combinations it is important to know of any interactions between these drugs that might affect either their transport at the site of biotransformation or their metabolism in tumor cells.

On the basis of previous reports demonstrating a synergism between MTX and the vinca alkaloids [6, 7], a protocol associating MTX with vindesine (VDS) was undertaken. The two drugs were administered simultaneously as 36-h infusions, followed at the 36^{th} hour by leucovorin rescue, which was continued until MTX plasma concentrations decreased below $10^{-7}M$. Routine monitoring of MTX plasma concentrations showed that the administra-

tion of VDS during the MTX infusions led to lower MTX plasma levels [19]. So, in this study the metabolism of MTX, especially its hydroxylation into 7-hydroxymethotrexate (7-OH-MTX), and the possibility of an influence of VDS on this metabolism have been investigated.

Materials and methods

Chemicals

Bovine serum albumin (BSA), dihydrofolate reductase (DHFR), NADPH, and dihydrofolic acid were purchased from Sigma Chemicals Company (St. Louis, Mo, USA); MTX and folinic acid were supplied by Lederle Laboratories Division (American Cyanamid Co., Pearl River, NY); VDS was supplied by Eli Lilly and Co (Indianapolis, Ind); and 7-OH-MTX was obtained by hydroxylation of MTX using a partially purified aldehyde oxidase preparation from rabbit liver [18]. The purity of this metabolite was confirmed by UV absorption and high-pressure liquid chromatography with comparison against an authentic standard kindly supplied by Dr B. Chabner (National Cancer Institute, Bethesda, Md).

MTX and 7-OH-MTX determination

MTX assay. MTX plasma concentrations were measured by an enzymatic assay based on DHFR inhibition [3] which has been adapted for a centrifugal analyzer Cobas-Bio [14]. The useful concentration ranges were between 9×10^{-9} M and 1.6×10^{-7} M (determined by a coefficient of variation (CV) lower than 4.8%). The 7-OH-MTX interference on MTX measurements was lower than 1% [14].

7-OH-MTX assay. Recently we developed a liquid phase radioimmunoassay [4] in which MTX did not interfere significantly (cross-reactivity factor = 2.5×10^{-4}). Concentrations of unknown samples were calculated by an interpolation linearized logit (B/BO) versus log of concentration standard reference curve. With this procedure 7-OH-MTX was between $8.60 \times 10^{-10} M$ and $2.15 \times 10^{-9} M$ (CV lower than 7.5%). All samples were run in duplicate.

Clinical data

Ten patients entered the study. Their ages ranged from 43 to 74 years (Table 1). Only patients with serum creatinine $< 130 \,\mu M$, granulocyte count $> 1500/\text{mm}^3$, and platelet

¹ U. 278.

² Biochemical and Clinical Pharmacokinetics Laboratory,

³ Clinical Oncology Division of the Institut J. Paoli Calmettes, 232, Bd Sainte Marguerite, F-13273 Marseille Cédex 9, France

^{*} The work described in this paper was supported by grants from the Fédération Nationale des Centres de Lutte contre le Cancer and the Comité Départemental des Bouches du Rhône de la Ligue Nationale Française Contre le Cancer

Offprint requests to: N. Lena, Institut J. Paoli I. Calmettes, 232, boulevard de Sainte-Marguerite, BP 156, F-13273 Marseille Cédex 9, France

Table 1. Patient characteristics

Patient	Age	Sex	Performance status		Tumor	Pretreatment
			WHO scale	Karnovsky scale	localization	
MAD	70	M	0	9	Hypopharynx	0
BOR	52	M	0	9	Buccal cavity	Radiotherapy
ROC	57	M	I	8	Buccal cavity	Radiotherapy
WOJ	57	M	0	9	Buccal cavity	Radiotherapy
BOU	43	F	0	9	Breast	Surgery, chemotherapy
HAR	50	F	0	9	Breast	Radiotherapy, surgery, chemotherapy
EYR	57	M	III	5	Oropharynx	Radiotherapy
ROM	74	M	II	7	Oropharynx	Radiotherapy
BER	46	M	II	2	Oropharynx	Radiotherapy
SIM	48	M	0	9	Buccal cavity	0

count >100000/mm³ were eligible to take part in this study.

MTX and VDS (3 mg/m²) were administered simultaneously as a 36-h infusion. The MTX dose to be infused was calculated according to a test dose protocol described previously [20]: the MTX plasma clearance (Cl) was determined for each patient after an IV bolus administration (50 mg/m²) from the following equation:

$$Cl (l/h) = \frac{IV \text{ dose}}{AUC_{0 \to \infty}},$$

where AUC is the area under the MTX plasma elimination curve calculated by the trapezoidal rule [12].

The 36-h infusion dose (qo) to reach a predetermined plasma level (P) of 10^{-5} M was given by the formula:

qo (mg) =
$$P \times Cl \times 36 \times 454.45$$
,

where 454.45 is the molecular weight of MTX.

At the 5th hour of the infusion, MTX plasma levels are about 80% of the predetermined steady state level. This aliows adjustment of the MTX dose when the MTX concen-

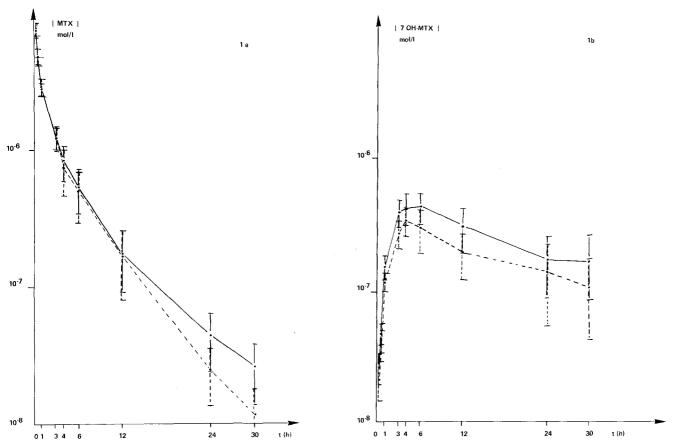


Fig. a, b. Plasma concentrations of MTX (a) and 7-OH-MTX (b) in six patients after 50 mg/m² MTX (\bullet —— \bullet) and 50 mg/m² MTX +3 mg/m² of VDS (\bullet —— \bullet). The plasma values plotted are mean value for these six patients and *bars* indicate the standard deviation

Table 2. MTX pharmacokinetic parameters and statistical comparison^a between MTX alone and MTX+VDS IV bolus

MTX pharmacokinetic parameters

Patients	MTX dose (mg)	MTX IV bo	lus	MTX+VDS IV bolus		
		AUC (10 ⁻⁸ Mxh)	Cl (1/h)	AUC (10 ⁻⁸ Mxh)	Cl (l/h)	
MAD	90	3528	5.6	3349	5.9	
BOR	90	1282	15.4	1406	14.1	
BER	90	1748	11.3	1406	14.1	
WOJ	80	1263	13.9	1507	11.7	
ROC	75	1210	13.6	1339	12.3	
SIM	80	1101	16.0	975	18.1	

^a Statistical analysis

	AUC after MT2 IV bolus	X AUC after MTX + VDS IV bolus
$\overline{\overline{\mathbf{x}}}$	1689	1664
σ	928	846
t-paired	`0.2	27
$t(v=5; 2\alpha = 0.05)$	2.5	571
Significance	N	0

tration in patient sample is outside the expected range at this time.

Study of VDS interaction on MTX pharmacokinetics

To study the interaction of VDS on MTX pharmacokinetics, six patients received two IV boluses (with and without VDS) and eight patients received at least two infusions (one of them without VDS). Four of these patients received the entire protocol (two IV bolus and two infusions with and without VDS). The administration of MTX alone protocol (by IV bolus or infusion) before or after MTX associated with VDS was randomized.

Results

IV Push

Six patients each received two IV boluses. MTX doses for a MTX IV push ranged between 75 and 90 mg (50 mg/m²). For MTX+VDS IV push the MTX doses were identical and VDS (3 mg/m²) was injected at the same time. Blood samples were collected at the following times after the IV push: 0, 0.25, 0.50, 1, 3, 4, 6, 12, 24, and 30 h. The plasma concentration curves for MTX and 7-OH-MTX are shown in Fig. 1.

MTX clearances (Cl) and areas under plasma concentration curves (AUC) have been computed as described previously [20] and are reported in Table 2. MTX parameters are not significantly modified by the presence of VDS. The MTX clearances ranged between 5.6 and 16 l/h (mean value: 12.6 l/h; SD: 1.6 l/h) for MTX IV push and between 5.9 and 18.1 l/h (mean value: 12.7 l/h; SD: 1.6 l/h) for MTX+VDS IV push. Similarly, AUC are not statistically different [t paired = 0.26; t (v=5; 2α =0.05) = 2.571].

As noted in Table 3, within 3 to 6 h (T max) plasma levels of 7-OH-MTX reached a maximum value (C max), ranging between 1.73 and $8.54 \times 10^{-7} M$ after MTX administration and between 8.8×10^{-8} and $7.89 \times 10^{-7} M$ when VDS has been added. The C max values decreased in the presence of VDS for each patient. This difference is statistically significant [t paired = 2.40; t (v = 5; 2α = 0.1) = 2.01]. Similarly, areas under the 7-OH-MTX plasma concentration curves are significantly decreased (14%-60%).

Infusions over 36-h

Eight patients received two infusions (with and without VDS). Blood samples were taken at the following times: 5, 12, 24, 36 h during the infusion and then every 12 h until a MTX plasma level lower than 10^{-7} M was achieved. Figure 2 shows the mean values of the MTX and 7-OH-MTX levels in plasma over 72 h for these eight patients. When MTX was given alone (Fig. 2a) the mean values of MTX

Table 3. 7-OH-MTX pharmacokinetic parameters and statistical comparison^a between MTX alone and MTX + VDS as IV bolus 7-OH-MTX pharmacokinetic parameters

Patients	MTX IV bolus			MTX+VDS IV bolus		
	$\frac{\mathrm{C}_{\mathrm{max}}}{(10^{-8} M)}$	T _{max} (h)	AUC (10 ⁻⁸ <i>M</i> xh)	$\frac{C_{max}}{(10^{-8}\ M)}$	T _{max} (h)	AUC (10 ⁻⁸ <i>M</i> xh)
MAD	85.4	6 h	2916	78.9	6 h	2422
BOR	95.5	4 h 05	1743	48.2	4 h 05	1027
BER	34.5	3 h 15	502	22.0	3 h	258
WOJ	30.4	4 h 35	449	19.3	4 h 05	180
ROC	44.8	4 h 05	683	38.0	4 h 10	587
SIM	17.3	3 h	116	8.8	3 h	54

^a Statistical analysis

	AUC after MTX IV	AUC after MTX+VDS IV bolus	
$\overline{\mathbf{x}}$	1068		755
σ	1061		889
t-paired		3.07	
$t(v=5; 2\alpha=0.05)$		2.571	
Significance		Yes	

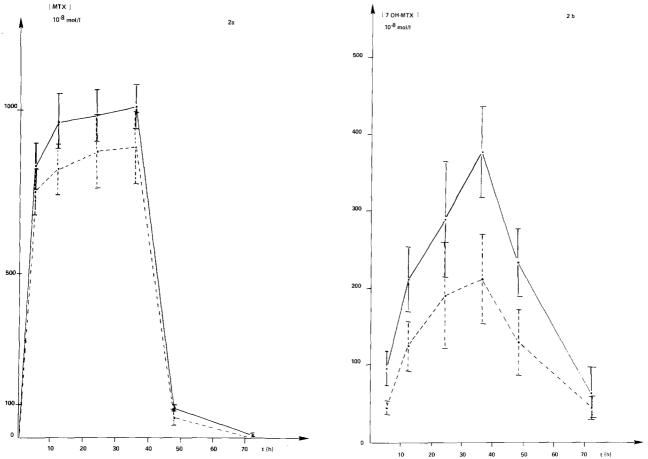


Fig. 2a, b. Effects of 3 mg/m² VDS (●----●) administered concomitantly with 36-h HD-MTX infusion in eight patients on MTX (a) and 7-OH-MTX (b) plasma levels compared with those after infusions of MTX alone (●——●). Plasma values plotted are mean value for eight patients, and *bars* indicate the standard deviation

Table 4. Statistical comparison of the areas under plasma level curves during MTX and MTX + VDS infusions

Patients	AUC ^a N	MTX	AUC ^a 7	OH-MTX	
	MTX alone	MTX+VDS	MTX alone	MTX + VDS	
MAD	1.377	0.910	0.590	0.411	
BOR	0.842	0.743	0.101	0.028	
WOJ	0.770	0.743	0.354	0.261	
ROC	0.675	0.642	0.261	0.116	
BOU	0.821	0.682	0.247	0.117	
HAR	0.924	0.678	0.405	0.190	
EYR	1.130	0.879	0.942	0.719	
ROM	1.640	1.197	0.533	0.426	
$\overline{\mathbf{x}}$	1.022	0.809	0.430	0.283	
t paired		556		7.42	
$t (v = 7; 2\alpha = 0.05)$			2.365		
Significance	Y	es	Y	es	

 $^{^{\}rm a}$ AUC (MTX and 7-OH-MTX) are expressed as $10^{-8}~\mbox{\it M/mg}$ MTX injected per hour

plasma levels were $0.98 \times 10^{-5} M$ (SD = 0.08) at the 24th hour and $1.01 \times 10^{-5} M$ (SD = 0.07) at the end of the infusion. In contrast, in the presence of VDS the predetermined plasma MTX level ($10^{-5} M$) was never achieved ($0.87 \times 10^{-5} M$ (SD = 0.11) at the 24th hour and

 $0.89 \times 10^{-5} M$ (SD = 0.11) at the 36th hour). Figure 2 b shows largely a decline in the 7-OH-MTX levels during MTX+VDS infusion: at the 36th hour, 7-OH-MTX levels were $0.38 \times 10^{-5} M$ (SD = 0.06) with MTX alone and $0.21 \times 10^{-5} M$ (SD = 0.06) for MTX+VDS infusions.

Statistical comparisons (t paired) of the areas under the curves for MTX and for 7-OH-MTX during infusions with and without VDS showed a significant decrease when VDS was administered simultaneously.

Discussion

Because of the relatively poor response of head and neck carcinoma and disseminated breast cancer treated by monochemotherapy, a need has been felt for protocols associating more than one drug. Several treatments have been developed in the expectation of synergism between the drugs, especially with MTX, one of the most important agents in the treatment of these carcinomas [5, 11, 13].

On the basis of several in vitro studies [10, 25] and a schedule-dependent synergism between VDS and MTX against L1210 leukemia cells [6, 25], a therapeutic protocol associating these two drugs has been developed for the treatment of patients with head and neck carcinoma or disseminated breast cancer.

After a MTX IV push (50 mg/m²) which allowed determination of the MTX infusion dose according to Monjanel's protocol [20], the patients received 36-h MTX

infusions with or without VDS (3 mg/m²). In a previous study, we described a decrease in MTX plasma levels during MTX+VDS infusions. This modification was not due to an increase in the renal MTX elimination [19]. We therefore attempted to study the variation in MTX metabolism in the presence of VDS. Plasma concentrations of 7-OH-MTX were monitored further, with the aid of the sensitive and specific radioimmunoassay we developed for this circulating metabolite of MTX.

To observe any interference of VDS on both MTX pharmacokinetics and metabolism, a protocol including two IV boluses (with and without VDS) or at least two infusions, one of them without VDS, was followed. The different routes of MTX and VDS administration (IV bolus and infusion) enabled us to show that VDS influences not only the MTX pharmacokinetic behavior but also the 7-OH-MTX formation.

When MTX and VDS were administered by IV push, VDS did not modify the MTX pharmacokinetic parameters. With regard to 7-OH-MTX, the areas under the curve were largely reduced (29%). T max values were identical and C max decreased, so we can postulate that this reduction was not due to a decreasing rate but to inhibition of or competition in the hydroxylation process. This observation fits in with the results obtained on the isolated perfused rat liver by Strum [24], who showed that the vinca alkoloids inhibit the MTX hepatic uptake. Consequently, the hydroxylation which is catalyzed by an hepatic aldehyde oxidase [17] could be reduced. During the infusion protocols, the same difference was noted in the 7-OH-MTX formation (AUC were decreased of 31.7%), but in this case, the MTX areas under the curve were also reduced (18.4%).

The unmodified MTX pharmacokinetics after an IV push may be explained by the rapid plasma disappearance of the VDS, which could prevent the maintenance of high VDS plasma concentrations for a sufficiently long time.

The observation that VDS decreases the MTX hydroxylation both after an IV push and after a 36-h infusion could have important implications for protocols associating these two drugs. As 7-OH-MTX has been demonstrated to be less soluble than MTX at acid pH, it contributes to the renal toxicity of an HD-MTX regimen [16]. Moreover, this metabolite is an ineffective inhibitor of DHFR. and at high concentrations it could compete with MTX for the membrane transport carrier, then decreasing the MTX cytotoxic activity and consequently the efficiency of the treatment. During the rescue, since the leucovorin is transported by the same carrier as MTX and its metabolite, the influence of the 7-OH-MTX is also very important: 7-OH-MTX plasma concentrations are largely higher than those of MTX. For example, at the 72th hour, the plasma concentration ratio of 7-OH-MTX/MTX is 650 in MTX alone infusions and only 283 when VDS is added. So, the entrance of leucovorin which facilitates the efflux of MTX out of the cells and replenishes the reduced folate pools depleted by the inhibition of DHFR, is reduced by the presence of large amounts of 7-OH-MTX. At the moment we can state that no toxicity has been observed for patients treated by this protocol associating MTX and VDS.

Acknowledgements. The authors thank J. L. Garcin, S. Just and B. Payet for their technical assistance, G. Fabre for helpful discussions and J. P. Sommadossi for critical comments on the manuscript.

References

- Benz C (1982) Optimal scheduling of methotrexate and 5-fluorouracil in human breast cancer. Cancer Res 42: 2081–2086
- Bertino JR (1981) Clinical use of methotrexate With emphasis on use of high doses. Cancer Treat Rep 65 [Suppl 1]: 131-135
- 3. Bertino JR, Fischer GA (1964) Technics for study of resistance to folic acid antagonists. Methods Med Res 10: 297-307
- Bore P, Rahmani R, Cano JP et al. (1984) Radioimmunoassays of 7-hydroxymethotrexate and methotrexate. Clin Chim Acta 141: 135-149
- Cappelaere P, Chauvergne J, Klein T et al. (1981) Randomized trial of vincristine-methotrexate-bleomycin and cis-platin or detorubicin for advanced head and neck cancer. Bull Cancer 68: 422
- Chello PL, Sirotnak FM (1981) Increased schedule-dependent synergism of vindesine versus vincristine in combination with methotrexate against L1210 leukemia. Cancer Treat Rep 65: 1049-1053
- Chello PL, Sirotnak FM, Dorick DM (1979) Different effects of vincristine on methotrexate uptake by L1210 cells and mouse intestinal epithelia in vitro and in vivo. Cancer Res 39: 2106-2112
- Ervin TJ, Kirkwood I, Weichselbaum RR et al (1981a) Improved survival of patients with advanced carcinoma of the head and neck treated by MTX/LCV prior to definitve XRT or surgery. Laryngoscope, 91: 1181-1190
- Ervin TJ, Weichselbaum RR, Miller D, et al. (1981b) Treatment of advanced squamous cell carcinoma of the head and neck with cis-platin, bleomycin, and methotrexate. Cancer Treat Rep 65: 787-791
- Fyfe MJ, Goldmann ID (1973) Characteristics of the vincristine-induced augmentation of methotrexate uptake in Ehrlich ascites tumor cells. J Biol Chem 218: 5067-5073
- 11. Gewirtz AM, Cadman E (1981) Preliminary report on the efficacity of sequential methotrexate and 5-fluorouracil in advanced breast cancer. Cancer 47: 2552-2555
- Gibaldi M, Perrier D (1982) Pharmacokinetics. In: Swarbrick J (ed) Drugs and the pharmaceutical sciences, vol 15. Dekker, New York.
- 13. Hortobagyi GN, Yap HY, Blumenschein GR et al (1983) Phase II evaluation of vinblastine, methotrexate and calcium leucovorin rescue in patients with refractory metastatic breast cancer. Cancer 51: 769-772
- Imbert AM, Pignon T, Lena N (1983) Enzymatic assay for methotrexate with a centrifugal analyzer (Cobas Bio). Clin, Chem 29: 1317
- Jacobs C (1982) Use of methotrexate and 5-fluorouracil for recurrent head and neck cancer. Cancer Treat Rep 66: 1925
- Jacobs SA, Stoller RG, Chabner BA, Johns DG (1977)
 Dosedependent metabolism of methotrexate in man and rhesus monkeys. Cancer Treat Rep 61: 651-656
- John DJ, Iannotti AT, Sartorelli AC et al (1965) The identity of rabbit liver methotrexate oxidase. Biochim Biophys Acta 105: 380
- Johns DG, Loo TL (1967) Metabolite of 4-amino-4-deoxy-N-10-methylpteroyl glutamic acid (methotrexate). J Pharm Sci 56: 356-359
- Lena N, Imbert AM, Pignon T, Faure R, Meyer G, Cano JP, Carcassonne Y (1984) Methotrexate-vindesine association in the treatment of head and neck cancer. Influence of vindesine on methotrexate's pharmacokinetic behaviour. Cancer Chemother Pharmacol 12: 120-124
- Monjanel S, Rigault J, Cano JP et al (1979) High-dose methotrexate: preliminary evaluation of a pharacokinetic approach. Cancer Chemother Pharmacol 3: 189-196
- Plasse TE, Ohnuma T et al (1984) Bleomycin infusion followed by cyclophosphamide, methotrexate and 5-fluorouracil in advanced squamous carcinoma of the head and neck. Cancer 53: 841-843
- 22. Schornagel JK, McVie JG (1983) The clinical pharmacology

- of methotrexate. Cancer Treat Rev 10: 53-75
- 23. Stoller RG, Jacobs SA, Drake JC, et al. (1975) Pharmacokinetics of high-dose methotrexate (NSC-740). Cancer Chemother Rep 6: 19-24
- 24. Strum WB, Liem HH, Muller-Eberhead U (1978) Effect of chemotherapeutics agents on the uptake and excretion of amethopterin by the isolated perfused rat liver. Cancer Res 38: 4734-4736
- 25. Warren RD, Nichols AP, Bender RA (1977) The effect of vincristine on methotrexate uptake and inhibition of DNA syn-
- thesis by human lymphoblastoid cells. Cancer Res 37: 2993-2997
- 26. Zager RF, Frisby SA, Oliveiro VT (1973) The effects of antibiotics and cancer chemotherapeutic agents on the cellular transport and antitumor activity of methotrexate in L1210 murine leukemia. Cancer Res 33: 1670

Received January 5, 1985/Accepted January 7, 1986